Einstein's Relativity: Shattering our Everyday Notions of Time

Anthony Mezzacappa
Department of Physics and Astronomy, University of Tennessee, Knoxville Governor's School for the Sciences and Engineering (GSSE) Lecture University of Tennessee, Knoxville

June 20, 2023

A Little History A Quick Overview

1905 - Annus Mirabilis

Einstein develops his "Special" Theory of Relativity

- Considers uniform relative motion - i.e., relative motion at constant speed - involving two observers.
- Time and distance between any two events observed by the two observers will not be the same.

Tells us that time and space are relative.
Points us to the concept of spacetime.

1916

Einstein publishes his "General" Theory of Relativity

- Considers all relative motion - i.e., uniform and accelerated motion - involving two observers.
- Ties acceleration to gravity and gravity to spacetime.

Tells us that spacetime is curved.
Tells us that what we perceive as gravity results from the curvature of spacetime.

Thought Experiment: Speed of Light

Reaped profound implications from very simple experiments.
$\frac{v+c}{1+\frac{v c}{c^{2}}}$

Thought Experiment: Time

v

$$
\Delta t^{\prime}=\frac{2 D}{c}
$$

Two Events:

- Emission of Light
- Detection of Light
v

Postulate 2:
The speed of light is the same for Isabel and Noah.

Noah

$$
\Delta t=\frac{2 D}{c\left[1-\left(\frac{v}{c}\right)^{2}\right]^{\frac{1}{2}}}=\frac{\Delta t^{\prime}}{\left[1-\left(\frac{v}{c}\right)^{2}\right]^{\frac{1}{2}}}
$$

Time
Dilation
$\Delta t>\Delta t^{\prime}$
\uparrow

Thought Experiment: Simultaneity

Postulate 2:

The speed of light is the same for Isabel and Noah.

$$
v \longrightarrow
$$

v \qquad v

Noah

Because of Postulate 2, the spheres expand in the same way in both reference frames.

Space

Space+Time=Spacetime

Time in an Accelerated Reference Frame

Indistinguishable Experiments

Time in Gravitational Field

$$
\Delta t_{N}=\left(1-\frac{g h}{c^{2}}\right) \Delta t_{I}
$$

$$
\frac{\Delta t_{I}-\Delta t_{N}}{\Delta t_{I}}=1 \times 10^{-15}
$$

Difference in time between the top of Mount Everest and sea level: one quadrillionth of a second per second.

Interstellar

GPS Satellite System 24 satellites in 12-h orbits in 6 orbital planes

- 1 satellite locates you anywhere on a sphere
- 2 satellites locate you anywhere on a circle
- 3 satellites locate you at one of two points
- 4 satellites locate you at a single point

But:

- satellite motion: time passes more slowly at the satellite relative to Earth - 5 ns ahead on Earth in 1 min
- gravity: time passes more quickly at the satellite relative to Earth - 25 ns behind on Earth in 1 min

Distance Error on Earth: ~ $1 / 4$ mile in an hour

